# Composting air emissions:

**New Research & Regulations** 

Jan. 25, 2011

Bob Horowitz
Robert.horowitz@CalRecycle.ca.gov

### This Presentation

- 1. CalReycle compost emissions reactivity studies
- 2. CalRecycle compost GHG study
- 3. San Joaquin and South Coast air district rule updates
- 4. New Source Review

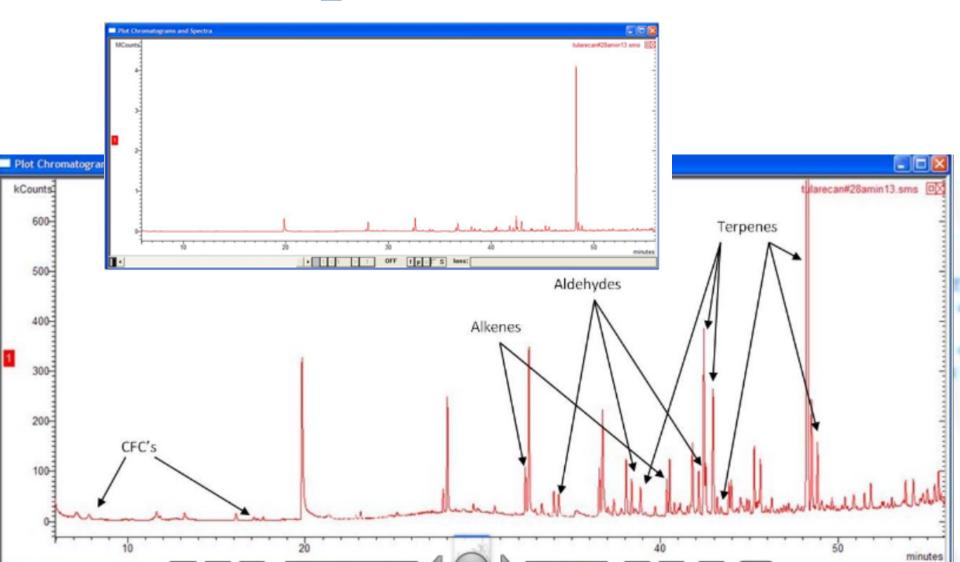
### 2009-2010 Compost Emissions Reactivity Studies

- Focused on ozone formation potential (OFP), not VOC emissions factors
- Highly reactive VOCs have high OFP
- Identify all C compounds in the emissions
- Tested OFP of windrows, tip piles, overs
- Tested impact of a pseudo-biofilter overs cap on OFP

#### The Mobile Ozone Chamber Assay



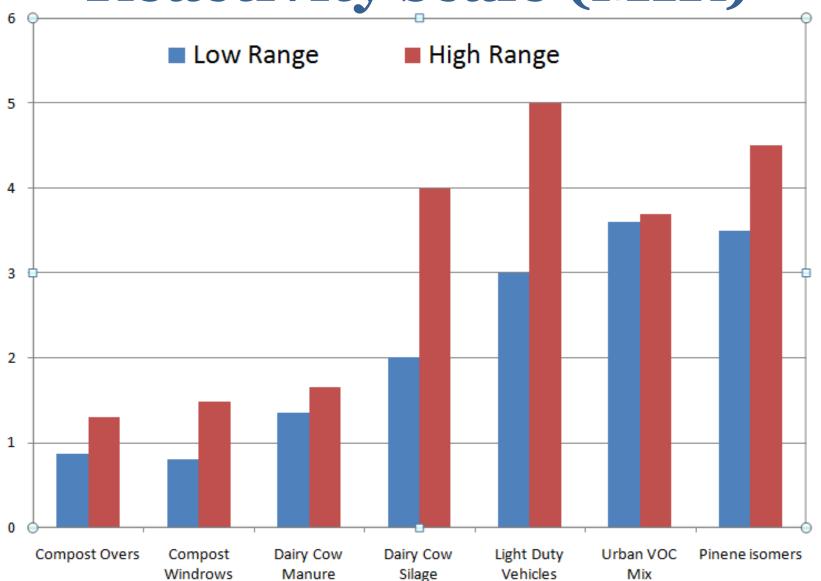



### First phase of the project Fall-Winter, 2009

- Funded by StopWaste of Alameda County, Tulare County Compost & Biomass, Grover Landscaping Inc., All Valley Environmental, Tracy Material Recovery, City of Modesto
- Studied tipping piles, 5-day old windrows, 21day old windrows
- Learning curve: dealing with high moisture
- Article in press, peer-reviewed journal, Atmospheric Environment, this winter

#### **Bottom Line from Phase 1**

- Compost emissions 80-95% ethanol, wood alcohol, isopropyl alcohol
- Light alcohols have low OFP
- More than 80 other compounds
- 1-3% highly reactive terpenes, aldehydes
- Windrow and tipping pile OFP low
- 3-week-old windrow slightly higher OFP than
   5-day-old windrow


### Spectrometer reading from compost emissions



To comply with accessibility requirements, this slide has been added to the original presentation to describe the graphic on the previous slide.

 The previous slide depicts the output from a spectrometer, showing the peaks which come from measuring compost emissions. Spectrometers measure the wavelengths of gas samples to determine the constituent gases within the mixture. Arrows point out the peaks associated with terpenes, aldehydes, and alkenes, three common groupings of volatile organic compounds.

Maximum Incremental Reactivity scale (MIR)



To comply with accessibility requirements, this slide has been added to the original presentation to describe the graphic on the previous slide.

The previous slide depicts a bar graph comparing the ozone formation potential of various emissions sources, including compost windrows, piles of oversized previously composter materials, dairy cow manure and silage, typical urban VOC mixtures, exhaust from light duty gasoline powered vehicles and pinene, a common naturally occurring volatile organic compound. The ozone forming potential is expressed as a maximum incremental reactivity. Pinene has the highest reactivity. Composting related reactivity is roughly one third as potent as typical urban volatile organic compounds.

### Second phase of the project Spring-Summer, 2010

- Funded by CalRecycle
- Studied 6-week old windrows, overs piles
- Compared emissions from matched pairs of composting windrows:
  - -5 days old and 21 days old
  - —Pseudo biofilter overs cap or not
- Report to be published by CalRecycle

#### **Bottom Line from Phase 2**

- Overs piles make almost no ozone
- OFP of 6 week-old piles very low
- Alcohols more than 90% of emissions
- Overs cap >25% effective in reducing OFP
- 3-week-old windrows still have higher OFP than younger windrows
- Maximum Incremental Reactivity of composting emissions mix .9 - 1.5: LOW

### Compost cap was effective

- Average of two replicates
- Overall emissions reduced
- Reactivity of the capped mix not reduced

|                | Average O <sub>3</sub> reduction in ppbv | Average O <sub>3</sub> reduction in % | Method          |
|----------------|------------------------------------------|---------------------------------------|-----------------|
| 5-Day Windrow  | 4.2                                      | 26.8%                                 | MOChA only      |
| 5-Day Windrow  | 16.3                                     | 57.3%                                 | MOChA and model |
| 21-Day Windrow | 16.4                                     | 36.1%                                 | MOChA only      |
| 21-Day Windrow | 23.0                                     | 50.4%                                 | MOChA and model |

To comply with accessibility requirements, this slide has been added to the original presentation to describe the graphic on the previous slide.

|                | Average 0 3 reduction in ppbv | Average 0 3 reduction in % | Method          |
|----------------|-------------------------------|----------------------------|-----------------|
| 5-Day Windrow  | 4.2                           | 26.8%                      | MOChA only      |
| 5-Day Windrow  | 16.3                          | 57.3%                      | MOChA and model |
| 21-Day Windrow | 16.4                          | 36.1%                      | MOChA only      |
| 21-Day Windrow | 23.0                          | 50.4%                      | MOChA and model |

### Compost GHG study

- Funded by CalRecycle, contractor is UC Davis
- Focus on N<sub>2</sub>0 and CH<sub>4</sub>
- Draft study plan finalized in November
- Field work 2010-2012
- Final report June 2012

### Two-pronged approach



1. Measure CH<sub>4</sub> and N<sub>2</sub>0 from composting windrows

2. Measure N<sub>2</sub>0 and CH<sub>4</sub> emissions from compost amended and conventionally fertilized croplands



### GHGs from composting facilities

- Existing data comes from Europe and mostly concerns mixed waste
- Multiple methods to be used
  - Flux chambers
  - Access tubes into the pile
  - Micro-meteorological approach
- Year-round sampling
- Existing EPA/ARB estimates could be low

### Compost impacts on cropland GHGs

- Micro plots at UC Davis Russell Ranch site
- Field testing in tomato and nut farms
- Variable rates of compost
- Compost alone and also mixed with variable rates of N fertilizers
- Will measure yields
- Focused sampling after fertilization and irrigation / first rains

### San Joaquin Rule 4566

Sept. 22, 2010 draft

- Feedstock holding times: 3 days all materials or cover with 6" compost cap
- Keep stockpiles below 122° F (50° C)
- Small facilities (<10,000 tpy): BMPs
  - Maintain O2 at 5% or above
  - Maintain H2O at 40-70%
- Keep stockpile and throughput records
- File plan with district on how to meet rule
- Go to air district board in April or May, 2011

### 2009 San Joaquin APCD study

Study: Irrigation system used for 3 hours before turning reduced emissions by 24% over first 3 weeks

Rule 4566: Facilities between 10,000-200,000 tpy must achieve 24% reduction

### 2009 San Joaquin APCD study

Study: Pseudo-biofilter compost cap reduced emissions by 53% over first three weeks.

Rule 4566: Facilities over 200,000 tpy must achieve 53% emissions reduction

### Rule 1133 (South Coast AQMD) Greater Los Angeles area)

- 1133.1 to be amended: feedstock holding times
   AFTER chipping/grinding, 3 days
- Same feedstock requirements for composters
- 3 days after grinding, use feedstocks as ADC, remove from site, or compost
- No passive static piles
- Looking for feedback on optimum temp, H<sub>2</sub>O, O<sub>2</sub>
- Facilities >10% foodwaste by weight need aeration system vented to biofilter
- Go to air district board in May, 2011

#### **New Source Review in the SJV**

- Not a future theoretical; here, now
- Any new facility with VOC emissions greater than 10 tons per year
- Any expanded facility with VOC increase greater than 2 pounds per day
- SJV emissions factor 5.71 lbs of VOC per ton of greenwaste feedstock
- Offset purchase at 1.5:1 ratio for each ton of emissions over 10 tons per year

## Outdoor ASP 85% VOC Capture / 500 tpd



- •\$35 million
- Biosolids and bulking agents
- Fully enclosed tipping and mixing areas
- Negative aeration to biofilter
- Synagro-Southern Kern County



·Inland Empire Utilities District - Rancho Cucamonga

#### Offset calculations

| Emission factor                    | 5.71      | pounds of VOC per wet ton (    | windrow)                     |
|------------------------------------|-----------|--------------------------------|------------------------------|
| NSR limit                          |           | pounds per year                |                              |
|                                    | •         |                                |                              |
| Incoming tons                      | 500       | tons per day                   |                              |
|                                    | 1,000,000 | pounds per day                 |                              |
|                                    | 156,000   | tons per year                  | 6 days per week at max input |
| Emissions                          | 2,855     | pounds VOC per day             |                              |
|                                    | 890,760   | pounds VOC per year            |                              |
|                                    |           |                                |                              |
| ASP reduction @ 85%                | 757,146   | pounds VOC removed             |                              |
| ASP reduction @ 95%                | 846,222   | pounds VOC removed             |                              |
| Remaining emissions at 85% capture | 133,614   | pounds VOC emitted             |                              |
| Remaining emissions at 95% capture | 44,538    | pounds VOC emitted             |                              |
| Offset threshold                   | 20,000    |                                |                              |
|                                    |           |                                |                              |
| NET at 85% capture                 | 113,614   | Cost at \$18k/ton, 1.5:1 ratio | \$ 1,533,789.00 OFFSETS      |
| NET at 95% capture                 | 24,538    | Cost at \$18k/ton, 1.5:1 ratio | \$ 331,263.00 OFFSETS        |

Is this a factor in such a large investment?

To comply with accessibility requirements, this slide has been added to the original presentation to describe the graphic on the previous slide.

| Offset calculations                          |           |                                     |                        |         |  |  |  |
|----------------------------------------------|-----------|-------------------------------------|------------------------|---------|--|--|--|
| Emission factor                              | 5.71      | Pounds of VOC per wet ton (windrow) |                        |         |  |  |  |
| NSR limit                                    | 20,000    | Pounds per year                     |                        |         |  |  |  |
|                                              |           |                                     |                        |         |  |  |  |
| Incoming tons                                | 500       | Tons per day                        |                        |         |  |  |  |
|                                              | 1,000,000 | Pounds per day                      |                        |         |  |  |  |
|                                              | 156,000   | Tons per year                       | 6 days per week at max | input   |  |  |  |
| Emissions                                    | 2,855     | Pounds VOC per day                  |                        |         |  |  |  |
|                                              | 890,760   | Pounds VOC per year                 |                        |         |  |  |  |
|                                              |           |                                     |                        |         |  |  |  |
| ASP reduction at 85%                         | 757,146   | Pounds VOC removed                  |                        |         |  |  |  |
| ASP reduction at 95%                         | 846,222   | Pounds VOC removed                  |                        |         |  |  |  |
| Remaining emissions at 85% capture           | 133,614   | Pounds VOC emitted                  |                        |         |  |  |  |
| Remaining emissions at 95% capture           | 44,538    | Pounds VOC emitted                  |                        |         |  |  |  |
| Offset threshold                             | 20,000    |                                     |                        |         |  |  |  |
|                                              |           |                                     |                        |         |  |  |  |
| NET at 85% capture                           | 113,614   | Cost at \$18k/ton, 1.5:1 ratio      | \$ 1,533,789.00        | OFFSETS |  |  |  |
| NET at 95% capture                           | 24,538    | Cost at \$18k/ton, 1.5:1 ratio      | \$ 331,263.00          | OFFSETS |  |  |  |
| Is this a factor in such a large investment? |           |                                     |                        |         |  |  |  |

### Any questions?

Bob Horowitz (916) 341-6523

Robert.horowitz@calrecycle.ca.gov http://www.calrecycle.ca.gov/Organics/Air/default.htm